PERTURBED OPERATORS IN HILBERT SPACE *
by

Theodore W. Palmer

Q?/LJ

This report reviews the theory of perturbed operators in an
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abstract Hilbert space and some important applications of the theory
to quantum chemistry. It is intended to serve as an introduction
to the original papers of Rellich, Sz-Nagy, Kato and others. The
theory developed by these authors, which is apparently little known
among quantum chemists, rigorously justifies the use of Rayleigh-
Schrodinger perturbation theory in many important ﬁuantum chemistry

problems.
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INTRODUCTION

The purpose of this report is to describe the properties and
interpretation of some of the perturbation series used in quantum
chemistry. However, since these results can only be obtained through
the use of the techniques of abstract1 Hilbert space it will be necessary
to describe these techniques, and explain why they are useful. Details
of proofs will not be given since these are available either in standard
books, or in the original articles, for which this report is intended
to be an introduction.

Any mathematical model for quantum mechanics must provide a
unified means for predicting and calculating the results of experiments
on atomic phenomena. Heisenberg's matrix mechanics, Schrgdinger's
differential equation approach, and Dirac's hybrid theory all meet
this requirement and have led to highly successful calculation from
their first introduction. However, it has always been difficult to
justify in rigorous mathematical terms some of the procedures used.

In fact,matrix mechanics, differential equations, and Dirac's theory
with its strong reliance on the delta function do not lend themselves
to precise statement, nor to the proof of highly general theorems.

For this reason, von Neumam‘i@:22 restated the theory in terms of the
theory of operators in abstract Hilbert space which was being developed
at the time by mathematicians in order to give a more precise and a
more unified treatment to the operators which had been considered in
various guises since Newton's time. This formulation made the intro-

duction of rigor comparatively easy.



The questions which von Neuman's formulation answers more easily
than others are fairly abstract, but nevertheless important for a
complete understanding of the mathematical theory. For instance,
because explicit solutions are known, one easily shows that the non-
relativistic infinite nuclear mass Schrgdinger equation for a one
electron ézom has infinitely many (bound state) eigenfunctions for
any positive nuclear charge y4 . What is the case for a two electron
atom? Direct study of the Schrgdinger differential equation cannot
easily establish the existence of even the ground state of helium
and certainly can not be expected to give any indication of the
existence of other stable states, much less of their number. However,
by formulating the problem in abstract Hilbert space, KatLg]was able
to show that for any Z > 1 there are infinitely many stable states.

This example is chosen because of the relatively physicai nature
of the question answered. The many mathematical difficulties avoided
by von Neumann's method are discussed at length in his book.

The main advantage of working in Hilbert space is the large number
of extremely powerful theorems available in this context. Of course,
this does not answer the question of why these theorems are available
in this context rather than in that of the classical theory of
differential equations, or of infinite matricesa, etc.

The main advantage of any abstract formulation is that unnecessary
details are suppresséd)thus focusing attention on the essential elements
of the problem. Several illustrations may be helpful. Functions which

are not square integrable over the configuration space of a physical




problem are sometimes useful in studying the behavior of a free
particle corresponding to the continuous spectrum of some Hamiltonian.
However, they are not essential and are omitted from Hilbert space,
thus allowing the use of greatly simplified algebraic notation.
Furthermore, the square integrable functions are reduced to the

status of "elements' which have no internal structure (save their norm
or length), only various relations with each other. Finally, these
functions even lose their individual identity since all functions which
are almost everywhere equal (i.e., which differ only on regions of
configuration space which have "volume' or measure zero) are lumped
together in the same element of Hilbert space. Again this does no
violence to the physical interpretation since an integration over

some portion of configuration space is necessary before meaningful
information can be extracted from a wave function. In these ways
extraneous considerations are eliminated from the theory.

The most important aspect of the superiority of the abstract
Hilbert space approach is, however, the insistence of the theory on
studying the set of functions on which an operator is defined. TIf one
writes down the Schrgdinger Hamiltonian operator for an atom or molecule,
it is not at all clear what differentiability conditions should be
placed on functions before they are considered to be in the domain of
definition of the operator. The natural boundary conditions prescribed
by the physical interpretation are that the function should be square
integrable over the whole configuration space, and this is just the

requirement that the function should represent an element in Hilbert
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space. But the question of the proper differentiability or continuity
requirements to put on eigenfurictions at points where the potential
is singular has given rise to discussion and cannot be solved by the
general theory of differential equations.

In abstract Hilbert space, operators with different domains are
regarded as different operators, and much of the theory revolves around
adjusting the domain of an operator by judicious enlargement, until
the extended operator possesses the most convenient properties. Since
the theory focuses attention on the problem of the choice of a
domain and provides machinery for its successful solution, all of the
ambiguity derived from the uncertain differentiability conditions

on differential equations is removed at the outset.

II. HILBERT SPACE

Hilbert space6 Y is an infinite dimensional vector space
defined over the complex numbers and satisfying the further
requirements described below. Thus elements (which we shall often
call functions) 49 s VG"‘of N can be added and multiplied by
complex numbers and these processes satisfy the usual rules.

An inncr product is defined on }d which associates with each

aordered pair of elements e, Y a unique complex number, ( ¢ , Y

which satisfies the following rules

(a ‘P, \‘lj) = a(‘P) kP) for every complex number a .

((P: +QP;UW) ((P:>LV) +(QP;\>W>
(¢,¥) = (¥, ¢)

(&P) LP) >0 for ¢ 75(3




The last property allows the definition of a norm7{l [l and a

distance H‘P-‘H‘ between ¥ and ¥ which satisfy the rules
ey = (¢, )%
Haen = lal ¢l

[(e.9)] ¢ el NYl
Ny-yit £ lg-0I + |l O-¥I

The most important property of 7-} is that it is complete in
this norm, i.e., if a sequence Y, , 9, , .... satisfied Cauchy's
condition ( "“Pn - ({’m” becomes arbitrarily small for sufficiently
large n and m) then there is an element & in ‘M to which the

sequence converges strongly ("‘-Fn - ¢ || becomes arbitrarily small

for sufficiently large n).

Finally we require that there exist a complete orthonormal set

inw which is countably infinite. By this is meant that there
exists at least one (in fact there are infinitely many) infinite
sequence @, , ¢, , ... of elements of N with ( Y;, ‘-/} ) equal
to 1l or O depending.oon whether i =3j or i # j and such that for
anytfin,d' Cf=2 (‘/,ffn)()ﬂn .

These requireﬁztllts completely determine the abstract Hilbert
space in which the analysis of this report is carried out. However,
to make contact with the usual ideas of quantum mechanics it is
necessary to construct N from more familiar objects of classical
analysis. Although one of the advantages of the abstract viewpoint

is that the same space N can be represented in several different



ways, there is one of particular importance. Consider the set of
square integrable complex valued functions ¥ on the configuration
space of some physical problem together with the inner product

( §n Y =<]Cf q7 av where\/ﬁ... d7V represents Lebesgue integration
over the whole space. With the aid of classical theérems of ‘
analysis, this set of functions is seen to satisfy all the properties
of 7{‘ except that 1) (‘P)‘P ) is zero for all functions which are
almost everywhere zero rather than just for % = 0, and 2) expansion
in a complete set of orthonormal functions only represents a function
almost everywhere, Both these difficulties are overcome by taking

the element of ok* to be sets of functions which are almost every-

where equal.

IIT. PROPERTIES OF UNBOUNDED OPERATORS IN HILBERT SPACE

An oEerator8 A 111‘}* assigns a unique element A‘P to each
element "P in a linear submanifold ﬁ A of % called the domain

of A, subject to the restriction that
AP + b Y ) = aaP + pavY

for all %) and *’ in XD A and all complex numbers a and lb.
The set of all A P for P EDA is called the @2 of A and is
denoted by AL ,.

It is important to note that the domain of an operator is
uniquely specified. When A and B are two operators such that
% A < ‘7©B and A ‘P = B ‘P for all LP contained in $A:

then B 1is called an extension of A and the two operators are




carefully distinguished if Ja A ¥‘ﬂa B’ A physical "operator"
must usually be extended until it becomes self-adjoint in the
sense to be defined below. If this is impossible, the '"operator"
is not satisfactory for use in the theory. Before this centrally
important concept can be introduced we must define several other
terms.

Few operators have the whole of a** for domain. An important
exception is furnished by the bounded operators which are usually
defined on all of ‘7+ . An operator A 1is called bouﬁded iff
(1if and only if) there exists a real number b such that

"A\P” S b“ “P“ for a1l P 1in £A' The least upper bound
for all such b 1is called the bound or norm of A and is denoted
by flall . Thus for a11 @ in D A ARl = 1ALl
Bounded operators have particularly simple properties, but
unfortunately few of the operators needed in quantum mechanics are
bounded.

Although few operators are defined on all of’ik# we do insist
that the domain of any operator considered in this report be dense.
That is, it is assumed that the domain contains arbitrarily good
approximations to any element of ‘%}'. This is not a serious
restriction physically since any physical "operator" is easily
defined on some suitablé dense domain and all subsequent considera-
tions deal with extensions. On the other hand, from the mathematical
viewpoint, entirely too little is known about an operator unless its
domain is dense.

Consider the equation (A-z)q9== ?J where the operator A, the



complex number 2z , and the element q} of qk# are given. This

equation may have no solution q) . However, if it has more than
one, we can choose distinct solutions LP 1 and %D 9 and then
A((P1-<P2) = z((Pl-%Jz), so z 1is an eigenvalue of A. Thus

whenever the range (A—z)éE)A of (A - z) 1is dense inc}$ and z

is not in the point spectrum (set of eigenvalues) of A there is an

operator (A-z)-1 with domain (A-z):a A which is inverse to A-z

in the sense that (A-z)-1 (A-z)(P = LP . (A-z)(A—z)-l'q) = HJ
for any ‘P in % A or any L‘V in (A-z)% A The set of complex
numbers for which (A-z)-1 is defined and bounded is called the

resolvent set of A. TFor 2z in this set (A-z)_1 is usually denoted

by Rz and this family of operators depending on 2z is called the
resolvent of z . The complex numbers which are not in the résolvent
set of A form the spectrum of A which therefore certainly contains
the point spectrum. The continuous spectrum is the set where

(A-z)-l is defined (i.e. with dense domain) but not bounded.

The resolvent plays a key role in the theory but consideration
of most of its properties must be postponed until other concepts are
available. However, consider a bounded transformation A defined
on all oif ﬂd‘and acggmplex number 2z such that l % ‘ > l\A|l.

Then the series ;E: Z-'n"1 An‘+) (where A°‘+’ = l‘ﬁj= qj and
A" means A appT?gd n times in succession) called the Neumann
series, convergeﬁ_itrongly and its limit ‘{D satisfies ’(A-z)47= %)
since (A-2)( - E;) z A" LP ) = %)‘ 2 -NAN HJ . Thus the

n=
resolvent set of a bounded transformation contains all sufficiently

large 2z and the resolvent can be expressed by the Neumann series.




The adjoint:9 AT of an operator A has for domain the set of
all elements "P of %‘ for which there exists an element gP t of %

which satisfies (A Y s ‘P ) = (LH s LPT) for all L{/ ir;%A.

When this condition is fulfilled, A-t‘P is defined to be tP which

can be shown to be unique since ,3 A is dense. From this definition
w e see that (A‘-P, "P ) = (‘P, AT "IJ ) whenever the two
expressions are defined, and that the domain of AT is the largest

which allows this equation.

Several other important concepts can be defined in terms of the
adjoint. 1Iff AT is an extension of A then A 1is called
Hermlt;an (or symmetric). Thus A is Hermitian iff (f ,AL[))=(ACP,\I/)
for all (P and "V in % A’ and this implies that its eigenvalues
are real. The operators of physics are Hermitian.

Suppose there is a sequence of functions (P n in the domain
of an operator A, and that both of the sequences (P n and A (Pn
converge strongly. It is reasonable to expect that the domain of A
can be extended to include the limit CP of the sequence CP 0’ with
A ‘P defined as the limit of A(Pn . When A 1is Hermitian this
is actually possible and the resulting operator is still Hermitian.
If the domain of an operator A is enlarged by the inclusion of all
such extensions, then the new operator is called the élbéux;e of A.

i

In particular, if A 1is Hermitian its closure is A . An

. ~. 10
operator which is equal to its own closure is called closed.
The resolvent of a closed operator is an analytic function of Z

throughout the resolvent set, and for each 2 it is a closed

bounded operator defined on all of - ,



Most closed Hermitian operators can still be extended in
infinitely many ways. The various extensions have different eigen-
values and eigenfunctions, and thus correspond to different operators
in the physical sense as well as in the strict mathematical sensell.
Furthermore, it is important that the set of eigenfunctions of an
operator should be complete when the continuous spectrum is suitably
included. This is not true for arbitrary Hermitian operators,
because the appropriate eigenfunctions may not belong to the domain.
Here we see very clearly the need to extend an operator. However,
if a Hermitian operator is extended too far it loses its Hermitian
character. For instance the adjoint of a Hermitian operator A

is only Hermitian if it coincides with the original operator A.

IV. SELF-ADJOINT OPERATORS

+

An operator A is called self-adjoint when A = A .

Self-adjoint operators are exactly those for which the set of eigen-

functions is well defined and "

coﬁplete" in the sense which we now
explain.

If we consider the nonrelativistic infinite nuclear mass
Hamiltonian operator for hydrogen, a full set of its eigenfunctions
is known. However, the set is not complete: to expand an arbitrary
function, an integration over the unbound states is also needed.
Since the wave functions of these states are not square integrable
they do not represent elements of HilBert space.

In order to express the type of completeness necessary in this

situation, the idea of a resolution of the identity is essential.

10



11

Let us derive this concept in the simple case of a Hermitian
operator A which has a complete set of eigenfunctions ‘P 1’ CPZ’ e
in the usual sense. Let the corresponding eigenvalues which are not

necessarily all different be a, ay e, Then an%ofunction can

&0
be written as (P = Z (CP, CPn) <Pn and A‘F= z an(‘P,‘-Pn)<Pn .

If we consider an ope?;%or Px for each real number n}={0 defined by

PxLP = Z (P, CPn)CPn R then in terms of the Stieltjes integral
a

p€x

we can write

@=f°jpx‘9 A‘P=f°:dPXCP for ¢ inﬁA
-0 ~00

The second formula merely expresses the obvious fact that the
contribution of each eigenfunction CP n to (‘P is multiplied

by A& , ¥hen A acts on ('P For each real number x P_ will
be a projection operator onto the linear submanifold of all functions

of the form z bn‘Pn with Z \bnl 2 < ©0 for arbitrary complex

a <x a <£x

bn' Any pPojection operato%r:l P 1is defined on all och and satisfies

the conditions

PP o= P pT o2 0 < @, - |29 s“‘P” 2

The range P GH‘ of a projection operator P is always a cloééd
linear s_ubmanifold, i.e., if a sequence of elements (P 1', CPZ,
contained in P% converges to (P then "P is also contained in P‘?VL .
Thus projection operators are the simplest and most well behaved of

all operators in Hilbert Space.
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We have shown how to express any Hermitian operator with
complete set of eigenfunctions in terms of a family of these
projections. This family Px can easily be shown to have the

following properties as a function of x

lim P ¢

x 0 for all CP
Y —>-00

lim Px P P for all (P

]

A —>40

lim P = »r ¢

L =>4, *o

x Z x,

X _>_x0

x < x' implies P_*P.1+ = P +P_=P
= X 'x X X X

Such a family of projections is called a resolution of the identity.

1
The central theorem in this subject, the Spectral Theorem, 3 asserts

that for any self adjoint operator A there exists exactly one
resolution of the identity Px such that the domain of A 1is the

set of all LP with
o

f «2a | PX‘P“ 2

~ oo
o>
A‘P=/x dPXCP
Zeo

for all (P in % A It is also true that any operator so defined

and such that
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is self-adjoint.

This is the property of self-adjoint operators which makes them
so important.

In order to show that the concept of a resolution of the identity
does replace that of a complete set of eigenfunctions)we must
indicate how the discrete eigenvalues and their corresponding
eigenfunctions can be derived from the resolution of the identity.

Consider again the Hermitian operator A with its complete set of

eigenfunctions and Px defined above. If { satisfies AP = a ‘P,

then
P x2 a
p(P) =
X 0 x< a
and Px is discontinuous in x at a . Although it is somewhat

more difficult to prove in generall;4 the situation is the same for
any self-adjoint operator, i.e., a real number a 1is an eigen-
value of A iff the resolution of the identity Px belonging to A
is discontinuous at a, in the sense that 1lim P P  does

X—>a

x4La
not equal Pa‘P for all ‘P

Fur thermore, P is an eigenfunction belonging to a iff

PP - lnm PXLP=(P .
X=>a

xLa

The spectrum of a self-adjoint operator is completely confined
to the real line, and consists exactly of the point spectrum (set

of eigenvalues) and the continuous spectrum, A real number b
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belongs to the spectrum of a self-adjoint operator A with resolution
of the identity Px iff Px is not constant throughout any open
interval containing b. Thus the continuous spectrum consists of the
‘points at which Px is continuous but not constant.

If A= ‘z::Ddex ip a self-adjoint operator,then functions
f(A) of A can be expressed by replac12§ x by f(x) 1in this
expression. For instance A2 = AA =~/;D x2dPx which would be clear
if A had a purely point spectrum, since then it merely states that
the contribution of each eigenfunction is multiplied twice by its
eigenvalue. We shall not develop the more difficult aspects of this
highly important operational calculus15 but only use a few simple
expressions of this type. In particular if 2z 1is in thgﬁ;z;olvent
set of A we can express the resolvent R, as Rz i/‘———ii-—
ZoD X-2

If the distance of 2z to the nearest point of the spectrum of A

is § then clearly no component of an element acted on by Rz will
be multiplied by a factor of magnitude greater than S -1. Thus

" Rz|| < S -1 » and in particular ” Rz " < ( Im(z)l -1 where
Im(Z) 1is the imaginary part of 2z . This is an immediate consequence
of the fact that the spectrum of a self-adjoint operator is confined
to the real axis and that the resolvent set contains at least all
nonreal points.

It is of great importance that this fact almost characterizes

self-adjoint operators. An operator is called essentially self-

adjoint iff its closure is self-adjoint. To prove that a given
operator is essentially self-adjoint one usually uses the fact that a

Hermitian operator is essentially self-adjoint iff its resolvent
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set contains points from both the upper and lower half plane. A self-
adjoint operator A 1is closed since its closure is A++ = A.
Therefore, we can characterize self-adjoint operators as those Hermitian
operators A for which there exist points 2z in both upper and

lower half plane with (A-z)“1 defined on all of a}}'.

An essentially self-adjoint operator has only one self-adjoint
extension which is its closure. Thus essentially self-adjoint
operators define a unique resolution of the identity and can be used
interchangeably with their self-adjoint closure. However, all
Hermitian transformations which are not essentially self-adjoint
either have no self-adjoint extensions or have infinitely many.

A Hermitian operator A 1is said to be bounded below (or half

bounded) iff there exists a real number b such that b(q?,qp)g(A(P,q7)
for all P in &)A' Any such operator has one self-adjoint
extension which can be distinguished from all others and which is
called the Friedrichs extension.

The method of proving this depends on replacing A by B=A-b+l
so that (‘P, ('P) < B¢, P). Then the quadratic form (B P, )
can be used as a norm for the "incomplete Hilbert space"i)A; By
completing this space and identifying its elements with elements of 3H5
the quadratic form is extended to a type called closed which is

always defined by a self-adjoint operator. This operator is then

the unique Friedrichs extension of B = A-b-1 .




V. ~MANY ELECTRON NONRELATIVISTIC HAMILTONIAN

A fundamental problem of quantum chemistry is to find self-
adjoint operators corresponding to the various physical observables
on atomic and molecular systems. The most important case is that of
finding energy operators. The Schrgdinger Hamiltonian operator of an

N-particle system reacting through Coulomb forces can be written

N 2 e. e’
i —a J
- E —_— , +Z Z :
H = T-1 K My L > i

(1)
where e and m, are the charge and mass of the ith particle.
Thus we wish to investigate whether this operator17 is essentially
self-adjoint on any reasonable domain, or whether great care must be
taken to insure this property. A knowledge of the domain on which
the operator is self-adjoint will settle all questions concerning
the proper differentiability conditions on functions in its domain.
Fortunately Kato in an important papeggjpublished in 1951 showed
that operators of a general type including the operator H of Eq. 1
are essentially self-adjoint when defined on any reasonable domain.
The main requirement on the operator is that the potential energy
should be the sum of locally square integrable functions in the
relative coordinates of each pair of particles. This allows
singularities of the form rij-m if m< 1.5.

To begin the analysis Kato requires that the operator be defined
on some domain (in the representation of %corresponding to square
integrable functions on the configuration space) which at least

includes the dense linear manifold generated by products of Hermite

16
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orthogonal functions of the Cartesian coordinates of configuration
space. When H 1is written as T+U where T 1is the kinetic energy
and U the potential energy 0perator’then in the momentum space
representation of 74‘ T becomes multiplication by a polynomial.
This type of operator is known to be essentially self-adjoint and the
domain ;ED o of its self-adjoint closure T0 is easy to characterize
in the momentum space representation. A Fourier transform translates
the definition of}E) o into the configuration space representation
again,-and by using these two representations and the Fourier transform
between them it is shown that any function 4) in ¢ED o when averaged
over the space coordinates of all particles but one will be small
compared to l'To ?ﬁ’ . This fact together with the restrictions on
the potential energy operator U proves for any b|:> 0 and

sufficiently large a’ the fundamental inequality:
| v ‘P” < a ” LP” +b' ”To ‘P” (2)

for all 47 in jE) 0 ° An easy calculation shows that (TO+V T ik)“1
is defined and bounded on all of 4?*‘ for sufficiently large real k .

From this we conclude the remarkable fact, of great importance
in perturbation theory, that the closure of H 1is defined and self-
adjoint on the same domain as its kinetic energy operator. This fact
or inequality (2) directly can be taken to mean that despite the
l/rij singularities the kinetic energy operator is '"larger" than the
potential energy operator.

This is not the place to pursue the generalizations and many

important consequences of this paper. The interested reader should
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consult the very readable original work,[8]and also [4:( [91 IlQ] [127
Results which are important for perturbation theory will be

mentioned as required.
VI. PERTURBATION THEORY

Perturbation theory calculates approximate solutions to a problem
which is too difficult to admit of direct solution, by starting with
a solution of a similar but easier problem and then making successively
more elaborate attempts to bridge the gap remaining, by the addition
of small corrections to the approximate solutions obtained. 1In the
language of quantum mechanics, one usually wishes to find the
eigenvalues and eigenfunctions of an operator H(A ) = H + Pl H,
by successive corrections of corresponding eigenvalues and eigen-
functions of H(0) = Ho . Here A 1is a real variable called the
pertt'1rbation parameter and the operator A H1 is considered to be
small in comparison to H0 in some sense. The physically interesting
problem may correspond to a single value of A, to several values,
or to all values in some interval containing zero, but in any case it
is éonvenient to retain A as a bookkeeping device.

The simple assumption that the eigenvalues E( A ) and eigen-
functions ¥ ( h ) of H()\ ) can be expanded in power series at
A = 0 leads to equations (4) and (5) by equating the coefficients

of powers of A in equation (3).

(Hor r i) (2 X ¥™) = HX) 4

= E() ‘P(a):(Z:Z"E(”’) gf‘/‘g)
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TRRTACEN S

4)

)t 5 EU Y )

j:n (5)

These are the equations of Rayleigh-Schrgdinger perturbation theory.
Equation (4) which is a special case of (3) with /x = 0, merely
expresses the fact that 9’ (0) and E(O) are an eigenfunction and its
eigenvalue of the unperturbed operator H0 . Although by themselves
these equations usually do not determine unique solutions, we shall
not be concerned with methods of removing this ambiguity nor with
finding particularly convenient solutions which allow simple formulas
for the E(nin terms of the L’) (V\)

The study of pertiurbed operators H (/\) in Hilbert space shows
some cases in which it can be proved that the eigenvalues and eigen=
functions of H(A ) can be expanded in power series thus justifying
the formalism of Rayleigh-Schrgdinger perturbation theory and
insuring the existence of solutions of (5) for all n. We shall
call this situation regular perturbation. In some cases the series
converge for the physically meaningful values of the parameter while
in others the function defined by the series near,A_ = 0 must be

)
analytically continued to the desired value of )\ .

There are also perturbation problems in which equation (5) has

solutions only for the first n integers or in which other criteria

for regular perturbation are not satisfied. In some of these cases
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the use of the partial perturbation series can be justified by a theory
of asymptotic perturbation. This theory has also been extended to
cover the difficult cases when the perturbation causes the spectrum

to become completely continuous.

VII. REGULAR PERTURBATION

We wish to study a family of self-adjoint operators H( A)
depending on a real parameter )\ . We shall follow Kat018 in
calling such a family regular for T>‘ I<f iff for some complex
number 2z its resolvent Rz( A ) can be expanded in powers of ,A
for I }\Ill/o.

There is nothing in this definition to prove that the domain
g)\ of H( )\) remains constant as )\ varies. However, 2)/\ is
constant in most important applications of the theory and in this case
a much simpler characterization of regularity is possible. For
convenience of later reference we state the relationship in two
theorems.

Theorem 119

Let H0 - be self-adjoint and Hn for n = 1,2,...
be Hermitian on a domain ZD . Let there exist nonnegative

constants a,b,c such that
I Hn‘f’“ <ol @ el lu el )

for n=1,2,... and for all %D in 23

Then




(=]

H(X) =Z /\V\H,, (7)

ns 0

is defined and self-adjoint on (/D for real A with ’ >\) <t

and is regular for real >\ with l)\‘ < (b+c)—1.

Theorem 2:20 Let H(/\ ) be a Hermitian operator on the
domain &) for each real value of /\ with /)\ , < P and let H(O0)
be self-adjoint. Then the following are equivalent:

1) H()\ ) 1is regular for I}\, < /D

2) For every "P in % H( /\ ) (P can be expanded in a power
series aboutA = 0 which converges at least for l)\} £ F o

3) H( }\ ) satisfies the hypotheses and therefore the
conclusions of Theorem 1.

To prove Theorem 2 we cagoshow 1) implies 2) implies 3)
implies 1). Let Rz (A) = Z )\ ? R(n) for some =z as
required by 1). Any element n=0 ‘P in the domain @ of H(A)

must be in the range of Rz()\ ) so we can write cP=Rz( A) \V .

ten BN P =0 -, MY = ¥ osm (X -

oQ
( Y +zR(O)qJ) + Z /\ n(zR(n) Y ) which expresses

n=1
H( N )CP as a power series as required by 2),

The Hn of Theorem 1 can be constructed from an H( A )
satisfying 2) merely by considering the coefficient of )\ " in the
expansion of each H( A )(P . Since i is in the resolvent set
of a self-adjoint operator such as H(0) = Ho , it follows that

H(A )Ri(O) and HnRi(o) are bounded and defined on all of % .

21
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Inequality (6) follows easily.
Since 1) is part of the conclusion of Theorem 1 it only

remains to prove that theorem. Since H(0) = H0 is self~adjoint
o0 1
we can write Riik(O) = Cla el dPx where Px is the

6
resolution of the identity belonging to Ho . The inequality

S
provides a bound for HnRi ik(0). Thencgyr small enough ' ! and

B n -1

large enough h. we can expand [1 + Z A HnR:t ik(o)] in a
Neumann series. This proves the regular??% since
R (AN) =R (0)”[1+Z )\nHR (0)] - H(A ) is also
+ ik +ik n +ik

s .n=1 . . Ckf
seen to be self-adjoint since R+ik(‘A ) is defined on all of .

It will be seen that this discussion has led to the consideration

of operators much more general than Ho +})\ H This greater generality

{

does not complicate the theory and is océasionally helpful in

1

application. The only essential difference when the Hn are all
zero beyond a certain point is that the operator H()\) is defined
for all real values of,A rather than in a restricted region. Even
in the simpler case, however, it need not be regular except in the
neighborhood of zero.

There is another criterion for regular operators which can be
applied to a family of half bounded operators even when the domain

varies with the perturbation parameter.

Theorem 3:21 Let Ho be bounded below and let all
H , n=0,1,2,:-:-+- be Hermitian on the same domain ;E> . Let

n

there be constants a,b,c and b,c, nonnegative such that

I(HD“P,‘P>J < ™ [ace, Prev @ P, PH] @




for everyso in % and n=1,2,... . Then g 7\“1{90 CF ) is

a quadratic form bounded below and defined in -62f5 for
l>\! < (b+c)- and the self-adjoint operator H( ?\) which
defines its closure is regular. If the -0 for sufficiently
large n then Z A n, is defined on @ and H(}\) is its
Friedrichs exten51on.
£? -
For the proof, Ho can be replaced by H = +a+bH0 which

g 1/2

has EZ 2 for a lower bound by inequality (8). Thus and

H-l/anH-l/2 for all n are bounded Hermitian operators which
can be defined on all of 7#L by using the Friedrichs extension
of H. With the help of these operators H( >\) can be written
explicitly and its resolvent is again expanded in a Neumann series
almost as in the proof of Theorem 1.

These two theorems show that on a suitable domain an operator
given in the form >\IHEI is self adjoint and regular when Ho

satisfies approprigig conditions and the Hn satisfy one or the

other of the related inequalities (6) or (8). 1In particular they

remove the necessity of proving directly that the presumably poorly

behaved operator H(‘>\) is self-adjoint for nonzero )\
When the inequalities (6) or (8) can be proved for any values
of a,b,c the qualitative parts of this theory follow including in

particular the existence of power series expansions near )\ =0

and thus the formalism of Rayleigh-SchrSdinger perturbation theory.

However, particularly when dealing with a non-degenerate eigen-
value, it is desirable to obtain small values of a,b,c in order

to secure favorable estimates of the various quantities involved.

23
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The specific results which can be obtained are given in the |
following theorems.

] .22

Let H( /\ ) be self-adjoint and regular in some
real neighborhood of )\ = 0. Let E be an eigenvalue of finite
mult:iplicity23 m of H(0) and let there be a positive number d

such that the open interval (E-d,E+d) is free from any other

point of the spectrum of H(0). Then there exist power series

E; (Ao, EfCAN)

and

&') 1(A )"”J L{Jm (/\)

all convergent in some neighborhood of /\ = 0, which satisfy the
following conditions:

1) QI—) j( A) 1is an eigenfunction of H()\ ) belonging to the
eigenvalue Ej (/\) for each j=1,"°",m

2) Ej(O) = E for each j =1,---,m and for each real )\
for which they are defined the \P j( /\) form an orthonormal set.

3) For each positive d' < d there exists a positive number
L =F(d') such that the spectrum of H( A) in the interval
(E-d', E+d') for rea1>\ with />\l < P consists exactly of the

points E (A )+ +,E ( A).

Theorem 5:24 Let Hn for n=0,1,2,::+ and H(A ) satisfy
the hypotheses of Theorem 1. Let Eo be a nondegenerate eigenvalue
(be an eigenvalue of finite multiplicity m , which does not split

for }\ # 0) of H0 and let it be the omly point of the spectrum
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of H in the interval lE-EOl< d for some positive d. Let

€ = (2a/d) + 2b[1+( l EO’ /d)] . Then for {)\I < (c+e)-1 the
spectrum of H()\ ) in the interval ‘E-Eo] < d-(d/2) [e/(l- l)\}c)]
consists of exactly one point eigenvalue E(>\) which is nondegenerate
(of multiplicity m) and which satisfies the inequality

\E()‘)-Eo\ < (e/2) l:e/(l- ')\, c)] . Where defined E( A ) can
be expanded in a convergent power serjes. For l)\) <(c+t=:)-1 there
exists a power series kV @) )‘ = Z }\n\P(n) which is a normalized
eigenf;mction of H(}\ ) with eigen%zargue E( A ). (there exist m
power series ‘V J.( A ) which for each real X\ form a complete
orthonormal set of eigenfunctions of H()\ ) belonging to the

eigenvalue E(CN) )

Theorem 6:25 Let Hn for n=0,1,2... and H()\ ) be as
described im Theorem 3. Let Eo be the only point of the spectrum
of H(0) in the interval (Eo-d,Eo+d) . Let Eo be a non-degenerate
eigenvalue (an eigenvalue of finite multiplicity which does not
split for )\ # 0). Then there exists a power series E(>\) with
E(0) = Eo and a power series (f/ (A) (m orthonormal power series
L"Ji( A, oo, qu()\ )) all convergent for l%)< [2a/d + 2b(1+(EO/d))
+c| ™ ard such that H(A') YA =AY ¥, Cpo.

These theorems are proved by integrating the resolvent
Rz( A) of H( }\) around a contour in the resolvent set. Let E0
be an isolated eigenvalue of Ho and C be a simple closed curve
around Eo which neither includes nor passes through any other point

of the spectrum of Ho and let C cross the real axis at xO<E0<x1 .
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[« "]
S 1
2mi RE(A)JZ‘- 571 "%.JF;(«\)J}
o O

" d X
/b2 R <1500 R0) - Pl
. 1 dz 1 for x inside C .
B m ‘/; x-2 ] 0 for x outside C )

However, the regularity of H( X\ ) guarantees that Rz( A ) can

be expressed in a power series in/\ at some point 2z in the
resolvent set and it follows that this is possible at every point.
On a curve C which remains at a positive distance from the
spectrum the radius of convergence of this representation will have
a positive minimum which can be calculated when the hypotheses of
Theorem 1 or 3 are given. This together with the fact that Rz(-)\ )
is also analytic in z can be used to justify the reversal of
integration. Then it is easily seen that le ()\ )-Px ()\ ) is

a projection onto a finite dimensional space with dimens(i)on equal

to the multiplicity of Eo’ and formula (9) expresses this projection
as a power series in )\ when {)\ ‘ is less than the minimum radius
of convergence for the series expression of Rz(/\ ) on C.

When no splitting occurs under the perturbation then the eigenvalues

and eigenfunctions can be obtained from this expression for Rz( A)




as power series with the same radius of convergence. The other
estimates in the theorem arise from comparing an upper bound of
[le( ) ) “ derived from its power series expansion in )\ with its
integral representation.

When a degenerate eigenvalue splits under perturbation, the
projection operator le( A) - Px ( )\) can be obtained as before,
but algebraic singularities may re:trict the radius of convergence

of series for the individual eigenvalues and eigenfunctions.

Nevertheless, some quantitative estimates have been cbtained in this

case alsoiké]

VIII. ASYMPTOTIC PERTURBATION SERIES

The theory of regular perturbation does not include all
applications. In particular there are cases when only a finite
number of terms of the perturbation series are well defined and
finite. Katga]has developed a theory of asymptotic perturbation
series which provides criteria for the usefulness of perturbation

theory in some nonregular cases. For a regular perturbation series

N,
the errors divided by‘A .
N
IE(}\) - Z' ,\“E(“),/)\” (10)
n=0

and

N
[¥Yoo-)y rof®

/)\” (11)
n=0
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appfoach zero as )\ approaches zero. We denote this by calling the
errors 0 /\:N) . It is this behavior of the partial sums of the
perturbation series which Kato generalizes.

The derivation is based on Kato's generalized variational
method.cSJ If H is self-adjoint and N "})//= 1 is chosen so that
((H k() s ‘-P )-4, (H “P, \"/ ) + d) contains no eigenvalue of H

except E then for some LP belonging to E
{E- H Yy, L{’)'l <¢ %t
| ¢-¥) <g4

where 5 = ”H\P - (H \P,W)\(J” and d1 is of the same

order of magnitude as d . When the nth partial sum of the
perturbation series is used for Qf/ then S becomeé form'ally' of
order n. The theory consists iﬁ justifying this> formal application,
and Kato summarizes the rather éomplicated hypoﬁheses and conclusions
by saying '"roughly speaking, perturbation method gives asymptot‘ic
series in ascending powers of the parameter )\ which are correct

so far as the coefficients can be calculated by means of op;arations

within the Hilbert space".?'5

Kato considers the operator Ho + }\ H1 defihed on the common
domain % of Ho and Hl which he assumes Hermitian. The
operator H_ restricted to ,9/ must have a unique self-adjoint
extension, but this is not always required for Ho + )\ Hy. The

operator H(/\ ) for )\ >0 is chosen as some self-adjoint extension
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of Ho + )\Hl and as the Friedrichs extension when that is defined.

Thus H( )\) may be highly discontinuous for /\ >0, but as A
approaches zero it has the limiting behavior described below.
These conditions must be strengthened before significant
conclusions can be drawn. First we assume either that Ho is
essentially self-adjoint on ED or that there exist constants

a,b,c such that

H Y, ) oz ¥, )
(12)

@Y, ¥ 2z a, ) + v ¥, )

for all WD in 5E> . With these conditions it is possible to show
that in any neighborhood of an eigenvalue E of Ho with finite
multiplicity m there are at least m points of the spectrum of
H( A ) (counting multiplicity) for sufficiently small A . This
means that these points of the spectrum are continuous functions of

A at A = ot . Thus perturbation method is justified to the
oth approximation. Note that the possibility that the spectrum
of H()\ ) may be continuous for /\ > 0 is not ruled out.

I1f we further assume that H(,\ ) does not have more than m
independent functions belonging to points of its spectrum near E;
then higher approximations are shown to be asymptotic when the
coefficients can be calculated within Hilbert space. For instance,

if all eigenfunctions with eigenvalue E belong to the domain

of H1 then (in an obvious notation)



Ej()\) E+/\E§l)+/\2E§2)+o()\2)‘

O A =P+ PP w e

It is extremely difficult to establish this last condition
on the multiplicity of the perturbed spectrum except in the

following cases:

1) H(A ) 1is regular and self-adjoint thus justifying the
much more complete theory of the last section.

2) Inequality(l2)is satisfied and the spectrum of H(Oj below
"E: consists of finitely many points of finite multiplicity.

Thus although this theory of asymptotic perturbation series may
apply to important problems where the perturbation is not regular,
it is difficult to establish its hypotheses in these cases. One
of its chief advantages is that it does facilitate investigation
of situations in which the theory of regular perturbation is clearly
too demanding, such as perturbation causing the spectrum to become
continuous.

When pertﬁrbation theory is applied to problems like the Stark
effect in which the spectrum of H( )\ ) becomes completely
continuous for )\ # 0, it is necessary first to consider what the
series is approximating. Physically an atom in a weak electric
field has almost stable states, and it is the analogue of these
which must be described mathematically. Since the objects being

approximated are not very clearly defined, it is obvious that the
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asymptotic formulation of perturbation theory is more appropriate
for their study since it only demands a definition of these objects
up to a certain order in }\ .

We can expect that almost stable stattes will have wave functions
which make H (H-E) ‘-P” quite small for appropriate ‘E since then
the Schrgdinger time equation will ensure that the state changes
slowly. However, this is not enough to characterize the states
which -we wish to study, since for any point E of the continuous
spectrum of an operator H there are ? which make ” (H-E) ‘Pﬂ
arbitrarily small. For most pointSof the continous spectrum though,
a function "P chosen to minimize this quantity will become more
and more diffuse in space as it approximates a typical non-square
integrable "eigenfunction' of the continuous spectrum. - We do not wish
to study such wave functions which belong to unbound states. Thus
we are led to introduce the closed submanifold of % which consists
of functions which are zero outside of seme bounded region of
configuration space which includes the physical system. -Actually
the projection P onto this sub-manifold is all that is needed.

We wish to study functions \P for which P ‘P is (at least
approximately) equal to &P .

Let E°

be an eigenvalue of Ho of finite multiplicity wW
and let us assume that solutions to the perturbation equations can
be constructed by Hilbert space operations at least phrough the
th . th .
N order. If the resulting N partial sums of the perturbed
- N N :
eigenvalues and eigenfunctions are denoted by El( )( A ),...,Em( )( X):

\P 1(N)( )\'),...’ k\Jm(N)( XN ) then a calculation shows that
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[acxy - & “{’j(N)M)“ oA M,

Thus satisfying one of the criteria for an almost stable state.
Under the general hypotheses discussed previously there are at
least m independent functions which belong to the spectrum of

H( A ) near EC . If it can be shown that those which correspond
to almost stable states are exhausted in some sense by those
calculated by perturbation theory, then its use as an asymptotic
series will be fully justified.

The desired criterion can be formulated with the help of
several more projection operators. Let PX(,X ) be the resolution
of the identity belonging to H(,K ) and let P(N)(,X ) be the
projection onto the closed submanifold generated by

() (M)
YAy, Y (X). Then

| pop e (XD - B o (AN p 2™ <o A ®

(where E is some small positive number) expresses the fact that
the fu.ctions &\’) for which P\P =“ﬁ" and ‘(H()\ )‘V s kP) -
o

(Y, V)

. (s N
combinations of the q) j( )( A ). This expression can be proved

< & can be expressed up to 0(/\ N) as linear

whenﬁ i contains the sub-manifold P% and enough other
1

functions to allow calculation of the Nth order perturbed eigen-

values and eigenfunctions.
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APPLICATIONS TO QUANTUM-CHEMISTRY

The most important application of the theory outlined above
concerns the electron repulsion terms inN-electron atoms, molecules,
or ions. The theory shows that these terms can indeed be regarded as
perturbations of the non-relativistic independent electron model.

The considerations of Section V concerning the Hamiltonian

(equation (1)) can easily be altered to show that the hypotheses
of Theorem 1 are satisfied for any such perturbation problem. As
an example consider an N ~electron atom in which for simplicity,
although this is not necessary, we shall regard the nucleus as of
infinite mass and thus fixed in space. Using atomic coordinates
scaled by the atomic number 2 we write the Hamiltonian as

- 2 - 1
H—HO+ZH1 TO+W+ H

7 2
where T0 is the closure of - —%——z’ vj
j=1

N
I 1
1 —
w"_z r, Hl_ZZ r,
=1

1 i>3 J

The considerations of Section V immediately apply with U replaced

by either W or H1 and so for all QP in @ o Ve get



34

i ngj” SR (4 I E
e @l < o (@l + o |z, 2l

where b' and b" may both be taken arbitrarily small. However,

@l = faP-wfl <fuafl+!lwel

< el + e hells v lls, ol

and therefore

.ﬁHfP\\s (a + 1——;——) o+ > |

1_b||

a Pl

This is obviously a very crude estimate but the coefficient
of ” Ho CPH can still be made arbitrarily small. Therefore the

perturbation is regular on the whole real axis, even though the

radius of convergence at the origin may be Vefy small. Thus for

any real number >\o we may take HO‘ = H0 +“ )\O,Hl as an
unper turbed operator and apply the theory to H'()\') = Ho'+ >\1-11 .
If tne state under investigation belongs to an isolated eigenvalue
of HO' of finite multiplicity, then it and its eigenfunctions

can be expanded in a power series around >\ 0 ° Thus the energy

and wave function of any state of a complex atom can be analytically
continued in )\ along the real axis between atoms of any atomic
number ()\ = 1/Z) and an atom with independent electrons, so

long as the energy of these states do not enter the continuous



spectrum or cross eigenvalues of infinite multiplicity. 1In particular
no difficulty occurs when the energy of one state crosses that of
another. Such crossings certainly occur in the periodic table.

This result offers the strongest possible justification for the use
of sets of hydrogenic quantum number to describe the states of
complex atoms.

When perturbation theory is used to calculate the actual energy
of an atomic state the radius of convergence of the series rather than
its analytic character is of interest. Because of the great
generality of the theory reviewed here, it naturally does not give
very close lower bounds on the convergence radius when applied to
specific problems. Nevertheless Katgil p-172, was able to obtain a
radius of convergence of .013 for the perturbation treatment of
the ground state of a two electron atom. This ensures that a
perturbation cadculation of this state converges at least for 06+
or atoms of higher atomic number.

Other applications of this theory are to the Stark effecghz
p.204; the diatomic moleculgiz p-194 and to the Zeeman effecgzq
p. 195 and[éél p.-570. The Stark effect and Zeeman effect pose
difficulties because the applied field is not bounded throughout
space. Thus the perturbed spectrum in the Stark effect is
completely continuous and the theory for weakly qpantized states
is applied. 1In the spin-free Zeeman effect for hydrogen a

different problem arises. The presence of the magnetic field

separates the energy levels of wave functions with different
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magnetic quantum number m , and in fact the perturbation energy is

/x m 1in suitable units. Thus no matter how small the field
strength,infinitely many states with sufficiently high magnetic
quantum number will cross any given state of low magnetic quantum
number. In other words for any non-zero value of )5 there is no
interval about an unperturbed energy level which remains free of
"foreign'" eigenvalues. Thus the perturbation cannot be regular by
Theorem 4. However, this difficulty is not serious. Consider the
operator Lz for the component of angular momentum in the direction
of the applied field. This commutes with both the unperturbed and
perturbed Hamiltonian which thus carry functions of magnetic quantum
number m into other such functions. Letﬁ%%ln be the set of all
functions qj with L‘ZCP = n1?3 in the Hilbert space C%f—of square
integrable functions on 3 space (the space of hydrogen wave
functions). Theni%}-m with the inner product of jHL certainly
satisfies all the properties of a Hilbert space except that it is
possibly not complete. However, any sequence of functions in f%é
all of which satisfy LZCP =m ﬁ’ converges to a function satisfying
this condition and thus converges in ﬁALm also. Therefore ‘%# o
is another representation of Hilbert space and the operator for
the Zeeman effect is defined in fﬂf o and can be studied there.

A similar procedure can sometimes be used to reduce a

particular degenerate eigenvalue to a non-degenerate eigenvalue
in a Hilbert space of symmetrized functions thus allowing the use
of the more complete theory available for that case. This would be
helpful in discussing the excited states of a two electron atom for

instance.
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1. T rather pedantically insist on speaking of abstract Hilbert
space to emphasize that the rigorous mathematical theory is intended
rather than the somewhat informal use of the language of Hilbert
space theory which is prevalent in discussions of quantum mechanics.
2. Numbers in square brackets refer to the bibligraphy.

. [16] see Chapter 1 in particular.

w

4. See the remarks and reference in [ﬁd] p. 98.

5. See Kemble (13| pp. 79 and 197-201. See also the excellent
discussion in Kato [_8_] pp. 195, 196 and 205. Actually if
eigenfunctions exist their properties do follow from the general
theory of differential equations, but their existence definitely
does not.

6. The older literature usually reserves the term Hilbert space
for the object defined here which is unique up to isomorphism.
However, it is now customary to use the term Hilbert space for any
real or complex vector space complete in a norm which comes from
an inner product. Thus we should speak of complex separable
Hilbert space. Separable is a topological term designating a space
with a countable dense subset. The terminology and notation of
this report follows the current practice of quantum chemistry
whenever convenient. Exceptions are usually noted. Only an
introduction to the concepts of Hilbert space can be given. The
interested reader should consult one of the many books available
in this field for further details. The classical book of Stongédu
is recommended for its completeness and careful development.

However, many simplifications of the theory have been introduced
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since its publication. A good source for these more recent
developments of the basic theory is[?il

For the application of the theory to quantum mechanics von
Neumaniiéris an indispensible source.
7. 1In books on physics the term norm is sometimes applied to (ﬂqu)
itself. p. 116. However, the usage given here is standard
among mathematicians. The inner product is sometimes also slightly
altered so that (a(P , Yy = (@ ,;lf/) = Z(cﬂkp), We use a bar to
denote complex conjugate.
8. The objects called operators here are more properly linear
operators on linear transformatioms.
9, Von Neumann defines adjoint differently p. 92, but the definition
given here is more useful for our purposes and is quite standard.
R.N. p. 299.
10. A helpful and illuminating discussion of these ideas in terms
of the graph of an operator is given in R.N. pp. 303-307.
11. A very illuminating example of the relation between Hermitian
. .y AR &7
operators and their self-adjoint extensions is given in p-309-311.
12. Von Neumanlié]pp.102-l70, gives a very thorough discussion of
the ideas we outline here.
13. See for instancgzﬂp. 313.
. i
14. For this and related matters see von Neumann p. 103-131.
Ces : R & 1)
15. A complete but difficult discussion is in p. 128-154.

16. See [27]pp. 329-335 for this beautiful proof.
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17. Both because this operator can be shown to be half bounded and
because it is real it can be shown that any domain on which it is
Hermitian does have at least one extension on which it is self-
adjoint.[zﬂp. 329.
18. [7] p. 154. This is equivalent to Rellich's original definition.
E‘?d p.559. Definition 1,2, Satz 1. A good discussion of the idea
behind these definitions is given intzgpp. 94-99. .
19. [20) p. 562. satz 5 also[j]p. 163.
20. This theorem is essentially due to Rellich['zﬂp. 476, Hilfsatz 4.
21. [7] p. 166.
22. [20] p. 560. satz 3.
23. We allow m=0 which is interpreted to mean the absence of
any point of the spectrum from the various intervals.
24. This theorem is essentially Theoreme II of Sz. Nagy [15:{
However, a refinement of the proof by KatoDJp. 157-162 allows an
improvement in the convergence radii. The main points of the

theorem were first proved by Rellichczlj, p. 360, Satz 1.

25. [7] pp. 164, 169.
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X. REMARKS ON THE BIBLIOGRAPHY

The most complete general survey of regular perturbation is
still the five papers of Rellicts:lsj,' '):23] published between 1936
and 1942. The first and second papers deal mainly with bounded
operators and with continuous perturbation respectively. The bulk
of the theory for unbounded operators is contained irpoj and [21]
while[22] chiefly studies operators with completely discrete spectra
all points of which are regular. However, all five papers contain
illuminating examples and counter examples. Some of this material
appears in English in [24

The methods of proof used by Rellich are greatly simplified
in EIE:-_( which gives the clearest and most direct proofs of the
main theorems. Some further improvements have been made by Kato
and appear together with his theory of asymptotic perturbation
in his excellent papelig a summary of which is published in l61

The forthcoming book by Friedrichlzl promises to be of great
interest when it is published in 1964. Schrgderrgsj and SpeismanEzﬂ
contain different estimates of the convergence radii for operators
of the form H + /\ H. which may be superior in some cases.
Titchmarsl-I?(ﬂMurray,[lg and Primasﬁﬂall use different mathematical
techniques to study perturbation problems.

Other papers in the bibliography extend the theory in various

ways.
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